UAS for Improved Weather Awareness

WINDMAP: Weather Intelligent Navigation Data and Models for Aviation Planning — NASA ULI

Jamey Jacob Director, Unmanned Systems Research Institute Oklahoma State University jdjacob@okstate.edu

UAS Needs and Benefits

Needs of UAS/UAM for Enhanced Weather Information

Mission: Provide Real-time Weather Awareness for Enhanced UTM Safety Assurance

- Weather creates a variety of barriers to all aircraft operations but in particular drones, which are easily grounded during inclement weather.
- Our goal is to address needs in real-time weather forecasting to improve the safety of low altitude aircraft operations across the AAM space.
- To solve this, we will integrate real-time observations from drones and other aircraft with weather prediction and flight management systems.

Weather **Specific:** Fog, Rain Hail, Icing

Urban Rural

Current ABL Sampling Strategies

Comparison of different platform capabilities

Our Goals

- · We will fill the gaps in mesoscale and microscale data and forecasting by
 - Providing Improvements in urban wind modeling and prediction
 - Developing novel in situ observations with UAS for assimilation into forecast models including airport operations
 - Sending real-time reports to pilots of drones and urban air taxis as well as air traffic control (DRONEREPS)
- This will improve the safety and efficiency of the US air transportation system and by working with industry and tribal governments provide unique opportunities for diverse populations.

Technical Challenges and Tasks

TC 1: Autonomous observations

Implementation of autonomous observation systems

- System development
- Validation
- Rural and urban testing

TC 2: Sampling Requirements

Spatial and temporal sampling requirements

 Observation System Simulation Experiments TC 3: Data Assimilation

Data assimilation

 Optimize DA approaches for real-time implementation into models and reporting system

TC 4: Forecast Reporting

Modeling and reporting

- Automated digital real-time "DRONEREP" capability
- LES simulation for near real-time forecasting

TC 5: UTM

System integration of real-time weather forecasting into UTM & ATMx

- Integration
- Field trials

Autonomous Observations

3D Profiling

Targeted Observations

Enhanced Forecasting: Sample Requirements, Data Assimilation & Reporting

Maximum Flight Altitude (AGL) Experiments

Flight profiles up to 400 ft, 1-km, 2-km, 3-km AGL

VAS FlightHorizon is already in field testing providing a high TRL foundation for the weather reporting component to build upon. VAS has an exclusive license to NASA algorithms.

Coordinated Ops in the NAS

Longitude

34°31'N

Partners

Helicopter Emergency Medical Services Tool HEMS Tool Info Feedback

April 2020 update information

Contact Info:

Jamey Jacob jdjacob@okstate.edu Director, Unmanned Systems Research Institute Oklahoma State University

facebook.com/uasweather uasweather.com & windmap.us @uasweather